Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.007
Filtrar
1.
Biochem Pharmacol ; 223: 116183, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38580167

RESUMO

In this study, we have investigated the pharmacological activity and structural interaction of two novel psychoplastogens, tabernanthalog (TBG) and ibogainalog (IBG) at heterologously-expressed rat (r) and human (h) nicotinic acetylcholine receptors (nAChRs), the rα1ß2γ2L γ-aminobutyric acid type A receptor (GABAAR), and the human voltage-gated N-type calcium channel (CaV2.2 channel). Both compounds inhibited the nAChRs with the following receptor selectivity: α9α10 > α7 > α3ß2 â‰… α3ß4, indicating that ß2/ß4 subunits are relatively less important for their activity. The potencies of TBG and IBG were comparable at hα7 and hα9α10 subtypes, and comparable to their rat counterparts. TBG- and IBG-induced inhibition of rα7 was ACh concentration-independent and voltage-dependent, whereas rα9α10 inhibition was ACh concentration-dependent and voltage-independent, suggesting that they interact with the α7 ion channel pore and α9α10 orthosteric ligand binding site, respectively. These results were supported by molecular docking studies showing that at the α7 model TBG forms stable interactions with luminal rings at 9', 13', and 16', whereas IBG mostly interacts with the extracellular-transmembrane junction. In the α9α10 model, however, these compounds interacted with several residues from the principal (+) and complementary (-) sides in the transmitter binding site. Ibogaminalog (DM506) also interacted with a non-luminal site at α7, and one α9α10 orthosteric site. TBG and IBG inhibited the GABAAR and CaV2.2 channels with 10 to 30-fold lower potencies. In sum, we show that TBG and IBG inhibit the α7 and α9α10 nAChRs by noncompetitive and competitive mechanisms, respectively, and with higher potency than the GABAAR and CaV2.2 channel.


Assuntos
Receptores Nicotínicos , Ratos , Animais , Humanos , Receptores Nicotínicos/metabolismo , Receptores de GABA-A/genética , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Simulação de Acoplamento Molecular , Ácido gama-Aminobutírico
2.
J Environ Sci Health B ; 59(5): 277-284, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38600794

RESUMO

The organophosphate insecticide chlorpyrifos (CPF), an acetylcholinesterase inhibitor, has raised serious concerns about human safety. Apart from inducing synaptic acetylcholine accumulation, CPF could also act at nicotinic acetylcholine receptors, like the α7-isoform (α7-nAChR), which could potentially be harmful to developing brains. Our aims were to use molecular docking to assess the binding interactions between CPF and α7-nAChR through, to test the neurocytotoxic and oxidative effects of very low concentrations of CPF on SH-SY5Y cells, and to hypothesize about the potential mediation of α7-nAChR. Docking analysis showed a significant binding affinity of CPH for the E fragment of the α7-nAChR (ΔGibbs: -5.63 to -6.85 Kcal/mol). According to the MTT- and Trypan Blue-based viability assays, commercial CPF showed concentration- and time-dependent neurotoxic effects at a concentration range (2.5-20 µM), ten-folds lower than those reported to have crucial effects for sheer CPF. A rise of the production of radical oxygen species (ROS) was seen at even lower concentrations (1-2.5 µM) of CPF after 24h. Notably, our docking analysis supports the antagonistic actions of CPF on α7-nAChR that were recently published. In conclusion, while α7-nAChR is responsible for neuronal survival and neurodevelopmental processes, its activity may also mediate the neurotoxicity of CPF.


Assuntos
Clorpirifos , Neuroblastoma , Receptores Nicotínicos , Humanos , Clorpirifos/toxicidade , Simulação de Acoplamento Molecular , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Acetilcolinesterase/metabolismo , Receptores Nicotínicos/metabolismo
3.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(3): 499-506, 2024 Mar 20.
Artigo em Chinês | MEDLINE | ID: mdl-38597441

RESUMO

OBJECTIVE: To investigate the effects of α7 nicotinic acetylcholine receptor (nAChR) agonist on ß3-adrenoceptor agonist-induced impairment of white fat homeostasis and beige adipose formation and heat production in obese mice. METHODS: Forty obese C57BL/6J mice were randomized into high-fat feeding group, ß3-adrenoceptor agonist-treated model group, α7 nAChR agonist group, and α7 nAChR inhibitor group (n=10), with another 10 mice with normal feeding as the blank control group. White adipose tissue from the epididymis of the mice were sampled for HE staining of the adipocytes. The expression levels of TNF-α, IL-1ß, IL-10 and TGF-ß in the white adipose tissue were determined by ELISA, and the mRNA levels of iNOS, Arg1, UCP-1, PRDM-16 and PGC-1α were detected using RT-qPCR. Western blotting was performed to detect the expression levels of NF-κB P65, p-JAK2, p-STAT3 in the white adipose tissue. RESULTS: Compared with those in the blank control group, the mice with high-fat feeding showed significantly increased body weight, more fat vacuoles in the white adipose tissue, increased volume of lipid droplets in the adipocytes, upregulated iNOS mRNA expression and protein expression of TNF-α and IL-1ß, and lowered expression of Arg-1 mRNA and IL-10 and TGF-ß proteins (P < 0.01). Treatment with α7 nAChR significantly reduced mRNA levels of PRDM-16, PGC-1α and UCP-1, lowered TNF-α and IL-1ß expressions, increased IL-10 and TGF-ß expressions, and reduced M1/M2 macrophage ratio in the white adipose tissues (P < 0.05 or 0.01). CONCLUSION: Activation of α7 nAchR improves white adipose tissue homeostasis impairment induced by ß3 agonist, promotes transformation of M1 to M2 macrophages, reduces inflammatory response in white adipose tissue, and promote beige adipogenesis and thermogenesis in obese mice.


Assuntos
Interleucina-10 , Receptor Nicotínico de Acetilcolina alfa7 , Animais , Masculino , Camundongos , Adipogenia , Tecido Adiposo Branco/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Homeostase , Camundongos Endogâmicos C57BL , Camundongos Obesos , Receptores Adrenérgicos/metabolismo , RNA Mensageiro/metabolismo , Termogênese , Fator de Crescimento Transformador beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
4.
Chem Biol Interact ; 393: 110957, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38513929

RESUMO

Huntington's disease (HD) is an inheritable autosomal-dominant disorder that targets mainly the striatum. 3-Nitropropionic acid (3-NP) induces obvious deleterious behavioral, neurochemical, and histological effects similar to the symptoms of HD. Our study aimed to examine the neuroprotective activity of tropisetron, an alpha-7 neuronal nicotinic acetylcholine receptor (α-7nAChR) agonist, against neurotoxic events associated with 3-NP-induced HD in rats. Forty-eight rats were randomly allocated into four groups. Group I received normal saline, while Groups II, III and IV received 3-NP for 2 weeks. In addition, Group III and IV were treated with tropisetron 1 h after 3-NP administration. Meanwhile, Group IV received methyllycaconitine (MLA), an α-7nAChR antagonist, 30 min before tropisetron administration. Treatment with tropisetron improved motor deficits as confirmed by the behavioral tests and restored normal histopathological features of the striatum. Moreover, tropisetron showed an anti-oxidant activity via increasing the activities of SDH and HO-1 as well as Nrf2 expression along with reducing MDA level. Tropisetron also markedly upregulated the protein expression of p-PI3K and p-Akt which in turn hampered JAK2/NF-κB inflammatory cascade. In addition, tropisetron showed an anti-apoptotic activity through boosting the expression of Bcl-2 and reducing Bax expression and caspase-3 level. Interestingly, all the aforementioned effects of tropisetron were blocked by pre-administration of MLA, which confirms that such neuroprotective effects are mediated via activating of α-7nAChR. In conclusion, tropisetron showed a neuroprotective activity against 3-NP-induced HD via activating PI3K/Akt signaling and suppressing JAK2/NF-κB inflammatory axis. Thus, repositioning of tropisetron could represent a promising therapeutic strategy in management of HD.


Assuntos
Doença de Huntington , Fármacos Neuroprotetores , Receptores Nicotínicos , Animais , Ratos , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Doença de Huntington/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , NF-kappa B/metabolismo , Nitrocompostos/toxicidade , Fosfatidilinositol 3-Quinases/metabolismo , Propionatos/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Nicotínicos/metabolismo , Transdução de Sinais , Tropizetrona/uso terapêutico
5.
Biochem Biophys Res Commun ; 709: 149825, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38537599

RESUMO

SARS-Cov-2, the virus causing COVID-19, penetrates host target cells via the receptor of angiotensin-converting enzyme 2 (ACE2). Disrupting the virus interaction with ACE2 affords a plausible mechanism for prevention of cell penetration and inhibiting dissemination of the virus. Our studies demonstrate that ACE2 interaction with the receptor binding domain of SARS-Cov-2 spike protein (RBD) can be impaired by modulating the α7 nicotinic acetylcholine receptor (α7 nAChR) contiguous with ACE2. U373 cells of human astrocytoma origin were shown to bind both ACE2-specific antibody and recombinant RBD in Cell-ELISA. ACE2 was found to interact with α7 nAChR in U373 cell lysates studied by Sandwich ELISA. Our studies demonstrate that inhibition of RBD binding to ACE2-expressing U373 cells were defined with α7 nAChR agonists choline and PNU282987, but not a competitive antagonist methyllicaconitine (MLA). Additionally, the type 2 positive allosteric modulator (PAM2) PNU120596 and hydroxyurea (HU) also inhibited the binding. Our studies demonstrate that activation of α7 AChRs has efficacy in inhibiting the SARS-Cov-2 interaction with the ACE2 receptor and in such a way can prevent virus target cell penetration. These studies also help to clarify the consistent efficacy and positive outcomes for utilizing HU in treating COVID-19.


Assuntos
COVID-19 , Receptores Nicotínicos , Humanos , SARS-CoV-2/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Receptores Nicotínicos/metabolismo , Ligação Proteica
6.
Neurochem Res ; 49(5): 1306-1321, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38472553

RESUMO

Sepsis-induced neuroinflammation is significantly associated with sepsis-related brain dysfunction. Remimazolam is a novel ultra-short-acting benzodiazepine anesthetic with multiple organ protective effects. However, it is unknown whether remimazolam can ameliorate LPS-induced brain impairment. In this study, Lipopolysaccharide (5 mg/kg, LPS) severely impaired Sprague-Dawley rats spatial learning ability, memory, and cognitive function. However, remimazolam treatment showed a protective effect on LPS-induced cognitive dysfunction. Remimazolam partly reversed LPS-induced splenomegaly, decreased serum cytokine expression, suppressed hippocampal M1 microglial activation, and mitigated oxidative stress injury and neuroinflammation. Electroacupuncture (EA) or PNU282987 treatment improved LPS-induced cognitive dysfunction and also significantly inhibited neuroinflammation and systemic inflammation. However, MLA, ML385, or subdiaphragmatic vagus nerve (SDV) treatment abolished the protective effects of remimazolam. Further mechanistic studies showed that remimazolam induces protective effects by activating subdiaphragmatic vagus nerve target α7nAChR-mediated Nrf2/HO-1 signaling pathway. These results demonstrate that remimazolam can up-regulate α7nAChR, Cyto-Nrf2, HO-1, and cognitive-related (CREB, BDNF, PSD95) protein expressions, suppress M1 microglia, ameliorate neuroinflammation or systemic inflammation, and reverse cognitive dysfunction. Therefore, this study provides insight into a new therapeutic target for the treatment of sepsis-induced cerebral dysfunction.


Assuntos
Disfunção Cognitiva , Sepse , Ratos , Animais , Ratos Sprague-Dawley , Lipopolissacarídeos/toxicidade , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Doenças Neuroinflamatórias , Transdução de Sinais , Benzodiazepinas/efeitos adversos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Nervo Vago/metabolismo
7.
Biomed Pharmacother ; 173: 116387, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38471276

RESUMO

BACKGROUND: The induction of intestinal inflammation as a result of abdominal surgery is an essential factor in postoperative ileus (POI) development. Electroacupuncture (EA) at ST36 has been demonstrated to relieve intestinal inflammation and restore gastrointestinal dysmotility in POI. This study aims to elucidate the neuroimmune pathway involved in the anti-inflammatory properties of EA in POI. METHODS: After intestinal manipulation (IM) was performed to induce POI, intestinal inflammation and motility were assessed 24 h post-IM, by evaluating gastrointestinal transit (GIT), cytokines expression, and leukocyte infiltration. Experimental surgery, pharmacological intervention, and genetic knockout mice were used to elucidate the neuroimmune mechanisms of EA. RESULTS: EA at ST36 significantly improved GIT and reduced the expression of pro-inflammatory cytokines and leukocyte infiltration in the intestinal muscularis following IM in mice. The anti-inflammatory effectiveness of EA treatment was abolished by sub-diaphragmatic vagotomy, whereas splenectomy did not hinder the anti-inflammatory benefits of EA treatment. The hexamethonium chloride (HEX) administration contributes to a notable reduction in the EA capacity to suppress inflammation and enhance motility dysfunction, and EA is ineffective in α7 nicotinic acetylcholine receptor (α7nAChR) knockout mice. CONCLUSIONS: EA at ST36 prevents intestinal inflammation and dysmotility through a neural circuit that requires vagal innervation but is independent of the spleen. Further findings revealed that the process involves enteric neurons mediating the vagal signal and requires the presence of α7nAChR. These findings suggest that utilizing EA at ST36 may represent a possible therapeutic approach for POI and other immune-related gastrointestinal diseases.


Assuntos
Eletroacupuntura , Íleus , Camundongos , Animais , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Íleus/terapia , Inflamação/metabolismo , Citocinas/metabolismo , Transdução de Sinais , Anti-Inflamatórios , Camundongos Knockout , Complicações Pós-Operatórias/terapia
8.
J Biochem Mol Toxicol ; 38(3): e23671, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38454809

RESUMO

Obesity is a major cause of nonalcohol fatty liver disease (NAFLD), which is characterized by hepatic fibrosis, lipotoxicity, inflammation, and apoptosis. Previous studies have shown that an imbalance in the autonomic nervous system is closely related to the pathogenesis of NAFLD. In this study, we investigated the effects of pyridostigmine (PYR), a cholinesterase (AChE) inhibitor, on HFD-induced liver injury and explored the potential mechanisms involving mitochondrial damage and oxidative stress. A murine model of HFD-induced obesity was established using the C57BL/6 mice, and PYR (3 mg/kg/d) or placebo was administered for 20 weeks. PYR reduced the body weight and liver weight of the HFD-fed mice. Additionally, the serum levels of IL-6, TNF-α, cholesterol, and triglyceride were significantly lower in the PYR-treated versus the untreated mice, corresponding to a decrease in hepatic fibrosis, lipid accumulation, and apoptosis in the former. Furthermore, the mitochondrial morphology improved significantly in the PYR-treated group. Consistently, PYR upregulated ATP production and the mRNA level of the mitochondrial dynamic factors OPA1, Drp1 and Fis1, and the mitochondrial unfolded protein response (UPRmt) factors LONP1 and HSP60. Moreover, PYR treatment activated the Keap1/Nrf2 pathway and upregulated HO-1 and NQO-1, which mitigated oxidative injury as indicated by decreased 8-OHDG, MDA and H2 O2 levels, and increased SOD activity. Finally, PYR elevated acetylcholine (ACh) levels by inhibiting AChE, and upregulated the α7nAChR and M3AChR proteins in the HFD-fed mice. PYR alleviated obesity-induced hepatic injury in mice by mitigating mitochondrial damage and oxidative stress via α7nAChR and M3AChR.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Brometo de Piridostigmina/farmacologia , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/complicações , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Fígado/metabolismo , Estresse Oxidativo , Cirrose Hepática/metabolismo , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Dieta , Dieta Hiperlipídica/efeitos adversos
9.
Cell Mol Life Sci ; 81(1): 129, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472514

RESUMO

Recent work putatively linked a rare genetic variant of the chaperone Resistant to Inhibitors of acetylcholinesterase (RIC3) (NM_024557.4:c.262G > A, NP_078833.3:p.G88R) to a unique ability to speak backwards, a language skill that is associated with exceptional working memory capacity. RIC3 is important for the folding, maturation, and functional expression of α7 nicotinic acetylcholine receptors (nAChR). We compared and contrasted the effects of RIC3G88R on assembly, cell surface expression, and function of human α7 receptors using fluorescent protein tagged α7 nAChR and Förster resonance energy transfer (FRET) microscopy imaging in combination with functional assays and 125I-α-bungarotoxin binding. As expected, the wild-type RIC3 protein was found to increase both cell surface and functional expression of α7 receptors. In contrast, the variant form of RIC3 decreased both. FRET analysis showed that RICG88R increased the interactions between RIC3 and α7 protein in the endoplasmic reticulum. These results provide interesting and novel data to show that a RIC3 variant alters the interaction of RIC3 and α7, which translates to decreased cell surface and functional expression of α7 nAChR.


Assuntos
Receptores Nicotínicos , Humanos , Acetilcolinesterase/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Membrana Celular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Receptores Nicotínicos/genética , Fala
10.
Toxins (Basel) ; 16(2)2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38393158

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive type of brain cancer, with a poor prognosis. GBM cells, which develop in the environment of neural tissue, often exploit neurotransmitters and their receptors to promote their own growth and invasion. Nicotinic acetylcholine receptors (nAChRs), which play a crucial role in central nervous system signal transmission, are widely represented in the brain, and GBM cells express several subtypes of nAChRs that are suggested to transmit signals from neurons, promoting tumor invasion and growth. Analysis of published GBM transcriptomes revealed spatial heterogeneity in nAChR subtype expression, and functional nAChRs of α1*, α7, and α9 subtypes are demonstrated in our work on several patient-derived GBM microsphere cultures and on the U87MG GBM cell line using subtype-selective neurotoxins and fluorescent calcium mobilization assay. The U87MG cell line shows reactions to nicotinic agonists similar to those of GBM patient-derived culture. Selective α1*, α7, and α9 nAChR neurotoxins stimulated cell growth in the presence of nicotinic agonists. Several cultivating conditions with varying growth factor content have been proposed and tested. The use of selective neurotoxins confirmed that cell cultures obtained from patients are representative GBM models, but the use of media containing fetal bovine serum can lead to alterations in nAChR expression and functioning.


Assuntos
Glioblastoma , Receptores Nicotínicos , Humanos , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/genética , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Agonistas Nicotínicos/farmacologia , Proteínas/metabolismo , Peptídeos/farmacologia , Linhagem Celular , Proliferação de Células , Antagonistas Nicotínicos/farmacologia
11.
Cells ; 13(4)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38391922

RESUMO

Alzheimer's disease (AD), marked by cognitive impairment, predominantly affects the brain regions regulated by cholinergic innervation, such as the cerebral cortex and hippocampus. Cholinergic dysfunction, a key contributor to age-related cognitive decline, has spurred investigations into potential therapeutic interventions. We have previously shown that choline alphoscerate (α-GPC), a cholinergic neurotransmission-enhancing agent, protects from Aß-mediated neurotoxicity. Herein, we investigated the effects of α-GPC on the microglial phenotype in response to Aß via modulation of the nicotinic alpha-7 acetylcholine receptor (α7 nAChR). BV2 microglial cells were pre-treated for 1 h with α-GPC and were treated for 24, 48, and 72 h with Aß1-42 and/or α-BTX, a selective α7nAchR antagonist. Fluorescent immunocytochemistry and Western blot analysis showed that α-GPC was able to antagonize Aß-induced inflammatory effects. Of note, α-GPC exerted its anti-inflammatory effect by directly activating the α7nAChR receptor, as suggested by the induction of an increase in [Ca2+]i and Ach-like currents. Considering that cholinergic transmission appears crucial in regulating the inflammatory profiles of glial cells, its modulation emerges as a potential pharmaco-therapeutic target to improve outcomes in inflammatory neurodegenerative disorders, such as AD.


Assuntos
Doença de Alzheimer , Receptores Nicotínicos , Humanos , Doença de Alzheimer/tratamento farmacológico , Microglia/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Glicerilfosforilcolina/farmacologia , Peptídeos beta-Amiloides/metabolismo , Receptores Nicotínicos/metabolismo , Transmissão Sináptica , Colinérgicos
12.
J Neurosci ; 44(12)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38331584

RESUMO

Cholinergic regulation of hippocampal theta oscillations has long been proposed to be a potential mechanism underlying hippocampus-dependent memory encoding processes. However, cholinergic transmission has been traditionally associated with type II theta under urethane anesthesia. The mechanisms and behavioral significance of cholinergic regulation of type I theta in freely exploring animals is much less clear. In this study, we examined the potential behavioral significance of cholinergic regulation of theta oscillations in the object location task in male mice that involves training and testing trials and provides an ideal behavioral task to study the underlying memory encoding and retrieval processes, respectively. Cholinergic regulation of hippocampal theta oscillations and the behavioral outcomes was examined by either intrahippocampal infusion of cholinergic receptor antagonists or knocking out cholinergic receptors in excitatory neurons or interneurons. We found that both muscarinic acetylcholine receptors (mAChRs) and α7 nicotinic AChRs (α7 nAChRs) regulated memory encoding by engaging excitatory neurons and interneurons, respectively. There is a transient upregulated theta oscillation at the beginning of individual object exploration events that only occurred in the training trials, but not in the testing trials. This transient upregulated theta is also the only theta component that significantly differed between training and testing trials and was sensitive to mAChR and α7 nAChR antagonists. Thus, our study has revealed a transient cholinergic-sensitive theta component that is specifically associated with memory encoding, but not memory retrieval, in the object location task, providing direct experimental evidence supporting a role for cholinergic-regulated theta oscillations in hippocampus-dependent memory encoding processes.


Assuntos
Receptores Nicotínicos , Receptor Nicotínico de Acetilcolina alfa7 , Camundongos , Animais , Masculino , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Hipocampo/fisiologia , Receptores Nicotínicos/metabolismo , Neurônios/fisiologia , Agonistas Nicotínicos/farmacologia , Ritmo Teta/fisiologia
13.
ACS Chem Biol ; 19(3): 592-598, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38380973

RESUMO

As ligand-gated ion channels, nicotinic acetylcholine receptors (nAChRs) are widely distributed in the central and peripheral nervous systems and are associated with the pathogenesis of various degenerative neurological diseases. Here, we report the results of phage display-based de novo screening of an 11-residue linear peptide (named LKP1794) that targets the α7 nAChR, which is among the most abundant nAChR subtypes in the brain. Moreover, two d-peptides were generated through mirror image and/or primary sequence inverso isomerization (termed DRKP1794 and DKP1794) and displayed improved inhibitory effects (IC50 = 0.86 and 0.35 µM, respectively) on α7 nAChR compared with the parent l-peptide LKP1794 (IC50 = 2.48 µM), which markedly enhanced serum stability. A peptide-based fluorescence probe was developed using proteolytically resistant DKP1794 to specifically image the α7 nAChR in living cells. This work provides a new peptide tool to achieve inhibitory modulation and specifically image the α7 nAChR.


Assuntos
Receptores Nicotínicos , Receptor Nicotínico de Acetilcolina alfa7 , Receptor Nicotínico de Acetilcolina alfa7/química , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Isomerismo , Receptores Nicotínicos/metabolismo , Peptídeos/farmacologia , Peptídeos/química , Encéfalo/metabolismo
14.
J Med Chem ; 67(8): 6344-6364, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38393821

RESUMO

Enhancing α7 nAChR function serves as a therapeutic strategy for cognitive disorders. Here, we report the synthesis and evaluation of 2-arylamino-thiazole-5-carboxylic acid amide derivatives 6-9 that as positive allosteric modulators (PAMs) activate human α7 nAChR current expressed in Xenopus ooctyes. Among the 4-amino derivatives, a representative atypical type I PAM 6p exhibits potent activation of α7 current with an EC50 of 1.3 µM and the maximum activation effect on the current over 48-fold in the presence of acetylcholine (100 µM). The structure-activity relationship (SAR) analysis reveals that the 4-amino group is crucial for the allosteric activation of α7 currents by compound 6p as the substitution of 4-methyl group results in its conversion to compound 7b (EC50 = 2.1 µM; max effect: 58-fold) characterized as a typical type I PAM. Furthermore, both 6p and 7b are able to rescue auditory gating deficits in mouse schizophrenia-like model of acoustic startle prepulse inhibition.


Assuntos
Tiazóis , Receptor Nicotínico de Acetilcolina alfa7 , Animais , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Regulação Alostérica/efeitos dos fármacos , Relação Estrutura-Atividade , Humanos , Tiazóis/farmacologia , Tiazóis/química , Tiazóis/síntese química , Tiazóis/uso terapêutico , Camundongos , Xenopus laevis , Ácidos Carboxílicos/química , Ácidos Carboxílicos/farmacologia , Ácidos Carboxílicos/síntese química , Amidas/química , Amidas/farmacologia , Amidas/síntese química , Masculino , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo
15.
BMC Cardiovasc Disord ; 24(1): 121, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38388385

RESUMO

BACKGROUND: Atherosclerosis(AS) poses a pressing challenge in contemporary medicine. Formononetin (FMN) plays a crucial role in its prevention and treatment. However, the detailed impact of FMN on the stability of atherosclerotic plaques and its underlying mechanisms remain to be elucidated. METHODS: An intervention consisting of FMN was given along with a high-fat food regimen in the ApoE-/- mouse model. The investigation included the evaluation of the degree of atherosclerotic lesion, the main components of the plaque, lipid profiles, particular markers indicating M1/M2 macrophage phenotypes, the quantities of factors related to inflammation, the infiltration of macrophages, and the identification of markers linked to the α7nAChR/JAK2/STAT3 axis effect molecules. RESULTS: The evaluation of aortic morphology in ApoE-/-mice revealed that FMN significantly improved the plaque area, fibrous cap protrusion, lipid deposition, and structural alterations on the aortic surface, among other markers of atherosclerosis,and there is concentration dependence. Furthermore, the lipid content of mouse serum was assessed, and the results showed that the low-, medium-, and high-dosage FMN groups had significantly lower levels of LDL-C, ox-LDL, TC, and TG. The results of immunohistochemical staining indicated that the low-, medium-, and high-dose FMN therapy groups had enhanced CD206 expression and decreased expression of CD68 and iNOS. According to RT-qPCR data, FMN intervention has the potential to suppress the expression of iNOS, COX-2, miR-155-5p, IL-6, and IL-1ß mRNA, while promoting the expression of IL-10, SHIP1, and Arg-1 mRNA levels. However, the degree of inhibition varied among dosage groups. Western blot investigation of JAK/STAT signaling pathway proteins and cholinergic α7nAChR protein showed that p-JAK2 and p-STAT3 protein expression was suppressed at all dosages, whereas α7nAChR protein expression was enhanced. CONCLUSIONS: According to the aforementioned findings, FMN can reduce inflammation and atherosclerosis by influencing macrophage polarization, blocking the JAK/STAT signaling pathway, and increasing α7nAChR expression.


Assuntos
Aterosclerose , Isoflavonas , Placa Aterosclerótica , Camundongos , Animais , Placa Aterosclerótica/tratamento farmacológico , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Transdução de Sinais , Camundongos Knockout para ApoE , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/prevenção & controle , Apolipoproteínas E/genética , Inflamação , RNA Mensageiro , Camundongos Endogâmicos C57BL
16.
PLoS One ; 19(2): e0291543, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38354108

RESUMO

Our previous work demonstrated that the anisodamine (ANI) and neostigmine (NEO) combination produced an antiseptic shock effect and rescued acute lethal crush syndrome by activating the α7 nicotinic acetylcholine receptor (α7nAChR). This study documents the therapeutic effect and underlying mechanisms of the ANI/NEO combination in dextran sulfate sodium (DSS)-induced colitis. Treating mice with ANI and NEO at a ratio of 500:1 alleviated the DSS-induced colitis symptoms, reduced body weight loss, improved the disease activity index, enhanced colon length, and alleviated colon inflammation. The combination treatment also enhanced autophagy in the colon of mice with DSS-induced colitis and lipopolysaccharide/DSS-stimulated Caco-2 cells. Besides, the ANI/NEO treatment significantly reduced INF-γ, TNF-α, IL-6, and IL-22 expression in colon tissues and decreased TNF-α, IL-1ß, and IL-6 mRNA levels in Caco-2 cells. Meanwhile, the autophagy inhibitor 3-methyladenine and ATG5 siRNA attenuated these effects. Furthermore, 3-methyladenine (3-MA) and the α7nAChR antagonist methyllycaconitine (MLA) weakened the ANI/NEO-induced protection on DSS-induced colitis in mice. Overall, these results indicate that the ANI/NEO combination exerts therapeutic effects through autophagy and α7nAChR in a DSS-induced colitis mouse model.


Assuntos
Colite , Neostigmina , Alcaloides de Solanáceas , Camundongos , Animais , Humanos , Neostigmina/efeitos adversos , Fator de Necrose Tumoral alfa/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Interleucina-6/metabolismo , Células CACO-2 , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Autofagia , Sulfato de Dextrana/toxicidade , Colo/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
17.
Placenta ; 147: 42-51, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38308901

RESUMO

INTRODUCTION: Preterm birth (PTB) frequently results from the syndrome of preterm labor (PTL). PTL is linked to an atypical maternal inflammatory response, as well as intrauterine inflammation and/or infection. In this study, we explored the mechanisms involved in nicotine-mediated abnormal macrophage polarization and trophoblast invasion associated with PTL. METHODS: First, THP-1-M0 macrophages were generated by treating the human monocytic leukemia cell line (THP-1) with phorbol 12-myristate 13-acetate for a duration of 24 h. Afterward, nicotine treatment was administered, followed by coculturing with the HTR-8/SVneo trophoblast cell line (HTR-8) at a ratio of 1:1. Next, we transfected sh-α7nAChR and treated THP-1-M0 macrophages and HTR-8 cells with nicotine. In addition, we transfected THP-1-M0 macrophages with sh-NC or sh-SIRT1 or subjected them to 4 nM nicotinamide adenine dinucleotide (NAD) metabolic inhibitor FK866 treatment. Moreover, HTR-8 cells were treated with nicotine, after which THP-1-M0 macrophages were cocultured with HTR-8 cells. Finally, we constructed an in vivo RU486-induced PTL rat model to verify the effect of nicotine and the mechanisms involved. RESULTS: We found that nicotine affected polarization and α7nAChR expression in HTR-8 cocultured THP-1-M0 macrophages. Knocking down α7nAChR blocked the effect of nicotine on the proliferation and invasion of HTR-8 cells. Furthermore, nicotine activated the α7nAChR/SIRT1 axis to regulate THP-1-M0 macrophage polarization through the cholinergic anti-inflammatory pathway. Additionally, NAD metabolism mediated the role of the α7nAChR/SIRT1 axis in nicotine-induced polarization of HTR-8 cocultured THP-1-M0 macrophages. In vivo experiments demonstrated that nicotine alleviated inflammation in PTL rats, which involved the α7nAChR/SIRT1 axis. CONCLUSION: Nicotine regulated abnormal macrophage polarization and trophoblast invasion associated with PTL via the α7nAChR/SIRT1 axis.


Assuntos
Nicotina , Nascimento Prematuro , Recém-Nascido , Feminino , Humanos , Ratos , Animais , Nicotina/farmacologia , Nicotina/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Sirtuína 1/metabolismo , NAD/metabolismo , NAD/farmacologia , Movimento Celular , Nascimento Prematuro/metabolismo , Trofoblastos/metabolismo , Macrófagos/metabolismo , Inflamação/metabolismo
18.
Cell ; 187(5): 1160-1176.e21, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38382524

RESUMO

The α7 nicotinic acetylcholine receptor is a pentameric ligand-gated ion channel that plays an important role in cholinergic signaling throughout the nervous system. Its unique physiological characteristics and implications in neurological disorders and inflammation make it a promising but challenging therapeutic target. Positive allosteric modulators overcome limitations of traditional α7 agonists, but their potentiation mechanisms remain unclear. Here, we present high-resolution structures of α7-modulator complexes, revealing partially overlapping binding sites but varying conformational states. Structure-guided functional and computational tests suggest that differences in modulator activity arise from the stable rotation of a channel gating residue out of the pore. We extend the study using a time-resolved cryoelectron microscopy (cryo-EM) approach to reveal asymmetric state transitions for this homomeric channel and also find that a modulator with allosteric agonist activity exploits a distinct channel-gating mechanism. These results define mechanisms of α7 allosteric modulation and activation with implications across the pentameric receptor superfamily.


Assuntos
Receptor Nicotínico de Acetilcolina alfa7 , Humanos , Receptor Nicotínico de Acetilcolina alfa7/química , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/ultraestrutura , Sítios de Ligação , Microscopia Crioeletrônica , Inflamação/tratamento farmacológico , Transdução de Sinais , Regulação Alostérica
19.
J Neuroinflammation ; 21(1): 3, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178134

RESUMO

BACKGROUND: The involvement of the autonomic nervous system in the regulation of inflammation is an emerging concept with significant potential for clinical applications. Recent studies demonstrate that stimulating the vagus nerve activates the cholinergic anti-inflammatory pathway that inhibits pro-inflammatory cytokines and controls inflammation. The α7 nicotinic acetylcholine receptor (α7nAChR) on macrophages plays a key role in mediating cholinergic anti-inflammatory effects through a downstream intracellular mechanism involving inhibition of NF-κB signaling, which results in suppression of pro-inflammatory cytokine production. However, the role of the α7nAChR in the regulation of other aspects of the immune response, including the recruitment of monocytes/macrophages to the site of inflammation remained poorly understood. RESULTS: We observed an increased mortality in α7nAChR-deficient mice (compared with wild-type controls) in mice with endotoxemia, which was paralleled with a significant reduction in the number of monocyte-derived macrophages in the lungs. Corroborating these results, fluorescently labeled α7nAChR-deficient monocytes adoptively transferred to WT mice showed significantly diminished recruitment to the inflamed tissue. α7nAChR deficiency did not affect monocyte 2D transmigration across an endothelial monolayer, but it significantly decreased the migration of macrophages in a 3D fibrin matrix. In vitro analysis of major adhesive receptors (L-selectin, ß1 and ß2 integrins) and chemokine receptors (CCR2 and CCR5) revealed reduced expression of integrin αM and αX on α7nAChR-deficient macrophages. Decreased expression of αMß2 was confirmed on fluorescently labeled, adoptively transferred α7nAChR-deficient macrophages in the lungs of endotoxemic mice, indicating a potential mechanism for α7nAChR-mediated migration. CONCLUSIONS: We demonstrate a novel role for the α7nAChR in mediating macrophage recruitment to inflamed tissue, which indicates an important new aspect of the cholinergic regulation of immune responses and inflammation.


Assuntos
Endotoxemia , Receptor Nicotínico de Acetilcolina alfa7 , Camundongos , Animais , Receptor Nicotínico de Acetilcolina alfa7/genética , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Macrófagos/metabolismo , Inflamação/metabolismo , Citocinas/metabolismo , Endotoxemia/metabolismo , Colinérgicos/metabolismo
20.
Food Res Int ; 176: 113808, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38163714

RESUMO

Hypothalamic inflammation and metabolic changes resulting from the consumption of high-fat diets have been linked to low grade inflammation and obesity. Inflammation impairs the hypothalamic expression of α7 nicotinic acetylcholine receptor (α7nAChR). The α7nAChR is described as the main component of the anti-inflammatory cholinergic pathway in different inflammation models. To assess whether the reduction in α7nAChR expression exacerbates hypothalamic inflammation induced by a high-fat diet (HFD), were used male and female global α7nAChR knockout mouse line in normal or high-fat diet for 4 weeks. Body weight gain, adiposity, glucose homeostasis, hypothalamic inflammation, food intake, and energy expenditure were evaluated. Insulin sensitivity was evaluated in neuronal cell culture. Consumption of an HFD for 4 weeks resulted in body weight gain and adiposity in male Chrna7-/- mice and the hypothalamus of male Chrna7-/- mice showed neuroinflammatory markers, with increased gene expression of pro-inflammatory cytokines and dysregulation in the nuclear factor kappa B pathway. Moreover, male Chrna7-/- mice consuming an HFD showed alterations in glucose homeostasis and serum of Chrna7-/- mice that consumed an HFD impaired insulin signalling in neuronal cell culture experiments. In general, female Chrna7-/- mice that consumed an HFD did not show the phenotypic and molecular changes found in male mice, indicating that there is sexual dimorphism in the analysed parameters. Thus, receptor deletion resulted in increased susceptibility to hypothalamic inflammation and metabolic damage associated with HFD consumption in male mice.


Assuntos
Dieta Hiperlipídica , Receptor Nicotínico de Acetilcolina alfa7 , Masculino , Feminino , Animais , Camundongos , Dieta Hiperlipídica/efeitos adversos , Receptor Nicotínico de Acetilcolina alfa7/genética , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Camundongos Knockout , Obesidade/genética , Obesidade/metabolismo , Inflamação/metabolismo , Aumento de Peso , Hipotálamo/metabolismo , Fenótipo , Glucose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...